Kinetics and mechanism of the addition of benzylamines to β-nitrostyrenes in acetonitrile

Hyuck Keun Oh,^a Jin Hee Yang,^a Dae Dong Sung^b and Ikchoon Lee^{*c}

^a Department of Chemistry, Chonbuk National University, Chonju, 560-756, Korea

^b Department of Chemistry, Dong-A University, Pusan, 604-714, Korea

^c Department of Chemistry, Inha University, Inchon, 402-751, Korea.

E-mail: ilee@dragon.inha.ac.kr; Fax: +82-32-8654855

Received (in Cambridge, UK) 16th August 1999, Accepted 14th October 1999

The kinetics and mechanism of the addition of benzylamines to β -nitrostyrenes in acetonitrile at 25.0 °C have been investigated. The addition reaction proceeds by two pathways, uncatalyzed (k_2) and catalyzed (k_3) paths. The kinetic isotope effects ($k_{\rm H}/k_{\rm D}$) involving deuterated benzylamine nucleophiles support the proposal that proton transfer from the amine to the β -carbon occurs concurrently with addition of the amine to the α -carbon. The transition state is predicted to have four- (I) and six-membered (II) cyclic structures for the k_2 and k_3 paths, respectively, with a tighter and more rigid structure for the uncatalyzed process. The cross-interaction constants, $\rho_{\rm XY}$, are negative (-0.90 and -0.54 when the fall-off factor is taken into account) and the magnitude is larger for the uncatalyzed path than for the normal backside attack S_N2 reaction of benzyl derivatives with anilines (-0.6 to -0.8).

Introduction

In our endeavors to establish the cross-interaction constants, ρ_{ij} and β_{ij} in eqns. (1) and (2) (where i and j can be any two

$$\log \left(k_{ij} / k_{HH} \right) = \rho_i \sigma_i + \rho_j \sigma_j + \rho_{ij} \sigma_i \sigma_j \tag{1}$$

$$\log (k_{ij}/k_{HH}) = \beta_i p K_i + \beta_j p K_j + \beta_{ij} p K_i p K_j$$
(2)

fragments X, Y or Z, involved in a transition state (TS), *e.g.* Scheme 1), as a mechanistic tool for organic reactions,¹ we have shown that the sign of ρ_{XY} and β_{XY} (Scheme 1) for the

Scheme 1 Typical $S_N 2$ transition state. R and σ represent reaction center and substituent on each fragment, *r* is the distance between fragments.

bond-making step is negative while that of ρ_{YZ} and β_{YZ} for the bond-breaking step is positive in normal backside attack S_N2 reactions.^{1,2} In general, the magnitude of ρ_{ij} (and β_{ij}) represents a change in the strength of interaction between the two fragments, i and j, on going from the reactants to the TS.³ Thus the magnitude of ρ_{XY} is greater while that of ρ_{YZ} is smaller, when the TS is tighter with a larger degree of bond making (shorter r_{XY}) and a smaller degree of bond cleavage (shorter r_{YZ}).³

In the limiting case in which only bond *cleavage* occurs in the TS, *i.e.*, in the $S_N I TS$, ρ_{YZ} was indeed positive and large.⁴ In this work, we have studied the other limiting case, in which only bond *formation* takes place in the TS, using the nucleophilic addition reactions of benzylamines to (E)- β -nitrostyrenes.

Although mechanistic studies of nucleophilic additions to an activated olefins including β-nitrostyrene have been reported,⁵

we have found no examples of reactions in which the structures (or substituents) of both the nucleophile (X) and the olefin (*e.g.* substituent Y in the β -nitrostyrene) are varied simultaneously.

We have carried out kinetic studies of addition reactions of benzylamines (BA) to (E)- β -nitrostyrenes (NS) in acetonitrile at 25.0 °C, eqn. (3). The main aim of this paper is to examine

$$XC_{6}H_{4}CH_{2}NH_{2} + YC_{6}H_{4}CH = CHNO_{2} \longrightarrow \begin{array}{c} YC_{6}H_{4}CHCH_{2}NO_{2} \\ \downarrow \\ NHCH_{2}C_{6}H_{4}X \end{array} (3)$$

the substituent effects (both X and Y) on this addition reaction, and to determine the cross-interaction constant, ρ_{XY} , for the exclusive addition step in the TS. The sign and magnitude of ρ_{XY} are expected to provide a useful guide for predicting the TS structure.

Results and discussion

The pseudo-first order rate constants (k_{obs}) for all reactions studied in this work obeyed eqn. (4), indicating that the

$$k_{\text{obs}} = k_2[BA] + k_3[BA]^2 \tag{4}$$

addition of BA to NS is catalyzed by a second BA molecule. The k_2 (uncatalyzed) and k_3 (catalyzed) values were determined as the intercept and slope, respectively, of a linear plot of $k_{obs}/[BA]$ vs. [BA]. The details of the experimental conditions, *i.e.*, [BA], [NS], ranges of k_{obs} and extinction coefficient changes at λ_{max} , are given in the Experimental section (vide infra). The k_2 and k_3 values are summarized in Tables 1 and 2, where the Hammett (ρ_x and ρ_y) and Brønsted (β_x) coefficients are also shown. Jalani *et al.* reported ^{5c} the k_2 and k_3 values with 28 X substituents but with Y = H only in eqn. (3). Comparison of their values at 25.0 °C with our k_2 and k_3 values in Tables 1 and 2 shows that our values are consistently greater, by a factor of 1.7. In their experimental section, they report that the k_{obs} values were evaluated from the linear plot of log[NS] vs. time. The slope of this plot is actually smaller by a factor of 2.303

J. Chem. Soc., *Perkin Trans.* 2, 2000, 101–105 **101**

Table 1 Second order rate constants ($k_2/10^{-2} \text{ dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$) for the addition reactions of β -nitrostyrenes with X-benzylamines in acetonitrile at 25.0 °C. [NS] = 8.0×10^{-5} M and [BA] = 1.5-25 mM. ρ_X and ρ_Y are the Hammett coefficients for X and Y. β_X is the Brønsted coefficient for X

	Y				
Х	p-Me	Н	p-Cl	p-NO ₂	$ ho_{ m Y}{}^a$
p-OMe	2.55 2.40 ^b 2.24 ^c	4.46	15.2	128 118 ^b 108 ^c	1.82 ± 0.09
<i>p</i> -Me	1.92	3.86	11.9	86.2	1.74 ± 0.08
Н	1.42	2.63	7.78	61.4	1.73 ± 0.06
p-Cl	0.649 0.605 ^b 0.562 ^c	1.12	3.02	20.6 18.9 ^b 17.1 ^c	1.60 ± 0.05
$\rho_{\mathbf{X}}^{d}$ $\beta_{\mathbf{X}}^{f}$	-1.17 ± 0.11 1.20 ± 0.16	-1.22 ± 0.15 1.36 ± 0.14	-1.41 ± 0.14 1.51 ± 0.15	-1.55 ± 0.19 1.59 ± 0.29	$\rho_{XY}^{\ e} = -0.41$

^{*a*} The σ values were taken from J. A. Dean, *Handbook of Organic Chemistry*, McGraw-Hill, New York, 1987, Table 7-1. Correlation coefficients were better than 0.998 in all cases. ^{*b*} At 15 °C. ^{*c*} At 5 °C. ^{*d*} The σ values were taken from D. H. McDaniel and H. C. Brown, *J. Org. Chem.*, 1958, 23, 420. Correlation coefficients were better than 0.985 in all cases. ^{*e*} Correlation coefficient was 0.997. ^{*f*} The pK_a values were taken from A. Fischer, W. J. Galloway and J. Vaughan, *J. Chem. Soc.*, 1964, 3588. Correlation coefficients were better than 0.991 in all cases. X = *p*-CH₃O were excluded from the Brønsted plot for β_X (benzylamine) due to unreliable pK_a value listed.

Table 2 Third order rate constants (k_3 /dm⁶ mol⁻² s⁻¹) for the addition reactions of β -nitrostyrenes with X-benzylamines in acetonitrile at 25.0 °C. [NS] = 8.0 × 10⁻⁵ M and [BA] = 1.5–25 mM. ρ_X and ρ_Y are the Hammett coefficients for X and Y. β_X is the Brønsted coefficient for X

		Y					
	Х	p-Me	Н	p-Cl	<i>p</i> -NO ₂	$ ho_{\mathbf{Y}}{}^{a}$	
	p-OMe	1.51 1.15 ^b 0.867 ^c	4.46	11.0	88.3 67.0 ^b 49.9 ^c	1.81 ± 0.13	
	<i>p</i> -Me	1.33	3.21	8.30	64.1	1.75 ± 0.08	
	Н	0.833	2.33	5.84	40.3	1.72 ± 0.14	
	p-Cl	0.481 0.351 ^b 0.254 ^c	1.15	2.76	20.0 15.7 ^b 12.1 ^c	1.67 ± 0.08	
	${{ ho}_{\mathbf{X}}}^{d}_{{eta}_{\mathbf{X}}}{{}^{f}}$	-1.04 ± 0.06 1.10 ± 0.08	-1.15 ± 0.08 1.13 ± 0.11	-1.19 ± 0.08 1.21 ± 0.11	-1.29 ± 0.02 1.26 ± 0.01	$\rho_{\rm XY}{}^e = -0.24$	
a-f Same as	the footnotes for	Table 1, except correl	ation coefficients, r: "	$r \ge 0.994$. $^{d} r \ge 0.994$	5. ${}^{e}r \ge 0.996. {}^{f}r \ge 0.$	995.	

than the true k_{obs} value, since k_{obs} is the slope of a linear plot of ln[NS] (=2.303 log [NS]) vs. time.⁶ If we multiply their k_{obs} value (and hence k_2 and k_3 values) by 2.303, our k_2 and k_3 values are consistently smaller by a factor of 1.2–1.3, which, we consider, is more appropriate since the difference in the temperature control may allow such small, but consistent, differences.

The magnitudes of ρ_x for $k_2(-1.2 \text{ to} -1.6$, which corresponds to -2.7 to -3.4 if the fall-off factor of $2.19^{1a,7}$ is taken into account for the CH₂ group between substituent X and the functional center N) and β_x (1.2–1.6) are relatively large, compared to the corresponding values of ρ_x (-1.89 ± 0.13) and β_x (0.68)⁸ for the addition of anilines.^{5b} This is an indication of a greater degree of bond formation in the TS for the BA relative to aniline addition. The magnitude of ρ_y is also large ($\rho_y = 1.6-1.8$) suggesting that negative charge development at the $C_a=C_\beta$ moiety should be large, which is consistent with the tight bond formation predicted by the large magnitude of ρ_x and β_x . In agreement with these trends, the cross-interaction constant, ρ_{xy} , is also large and negative ($\rho_{xy} = -0.41$, which corresponds to -0.90 when the fall-off factor is taken into account). The corresponding values for the normal backside attack S_N2 reaction of benzyl derivatives with anilines are *ca*. -0.6 to -0.8.^{1,2}

Surprisingly, our k_3 values give very similar, only slightly smaller, magnitudes of ρ_X , β_X , ρ_Y and ρ_{XY} (-0.24, corresponding

to -0.54 taking into account fall-off) to those for aniline addition. This may be taken as evidence for a slightly looser bondmaking structure in the catalyzed TS. This is supported by the smaller $k_{\rm H}/k_{\rm D}$ (>1.0) values for the catalyzed (k_3) process in Tables 3 and 4. The normal kinetic isotope effects ($k_{\rm H}/k_{\rm D} > 1.0$) involving deuterated benzylamines (XC₆H₄CH₂ND₂) provide evidence for partial N–H(D) bond cleavage in the TS.^{1b} We presume that proton transfer to C_β occurs concurrently with the C_a–N bond formation in the TS, I and II. In the k_2 path,

$$\begin{array}{cccccc} H & H & H & H \\ YC_6H_4 - C = -C = NO_2 & HN & H \\ HN - -H & CH_2 H - N & HN & H \\ CH_2 & CH_2 & CH_2 H - N \\ XC_6H_4 & CH_2 H - N \\ I & II & II \end{array}$$

relatively greater stretching of the N–H bond is required than in the k_3 path, so the $k_{\rm H}/k_{\rm D}$ values are greater in general. This is consistent with a lesser degree of bond formation in the catalyzed path, as indicated by the smaller magnitude of the selectivity parameters, $\rho_{\rm X}$, $\beta_{\rm X}$ and $\rho_{\rm XY}$. For both paths, the largest $k_{\rm H}/k_{\rm D}$ value is obtained for the X = p-OMe and Y =

Table 3 Kinetic isotope effects on the second-order rate constants for the reactions of β -nitrostyrenes with deuterated X-benzylamines in acetonitrile at 25.0 °C^{*a*}

Х	Y	$k_{\rm H}/10^{-2}~{\rm M}^{-1}~{\rm s}^{-1}$	$k_{\rm D}/10^{-2}~{ m M}^{-1}~{ m s}^{-1}$	$k_{\rm H}/k_{\rm D}$
p-OMe	<i>p</i> -Me	2.55 (±0.03)	0.992 (±0.002)	2.57 ± 0.06^{b}
<i>p</i> -OMe	Ĥ	4.46 (±0.06)	1.56 (±0.03)	2.86 ± 0.06
<i>p</i> -OMe	p-Cl	$15.2(\pm 0.2)$	5.18 (±0.06)	2.93 ± 0.05
<i>p</i> -OMe	p-NO ₂	128 (±3)	41.5 (±0.1)	3.08 ± 0.06
p-Cl	<i>p</i> -Me	0.649 (±0.005)	0.282 (±0.002)	2.30 ± 0.02
p-Cl	Ĥ	$1.12(\pm 0.02)$	$0.420(\pm 0.006)$	2.67 ± 0.04
p-Cl	p-Cl	$3.02(\pm 0.04)$	$1.10(\pm 0.02)$	2.74 ± 0.06
p-Cl	$p-NO_2$	20.6 (±0.4)	7.43 (±0.07)	2.77 ± 0.06
a C	• ·	CNC 1 DA	d	1111.0

^{*a*} Concentrations of NS and BA are the same as in Tables 1 and 2. ^{*b*} Standard deviations.

Table 4 Kinetic isotope effects on the third-order rate constants for the reactions of β -nitrostyrenes with deuterated X-benzylamines in acetonitrile at 25.0 °C^{*a*}

X	Y	$k_{\rm H}/10^{-2}~{\rm M}^{-2}~{\rm s}^{-1}$	$k_{\rm D}/10^{-2}~{ m M}^{-2}~{ m s}^{-1}$	$k_{\rm H}/k_{\rm D}$
p-OMe	<i>p</i> -Me	1.51 (±0.04)	1.17 (±0.02)	1.29 ± 0.04^{a}
<i>p</i> -OMe	Ĥ	4.46 (±0.06)	$3.41 (\pm 0.05)$	1.31 ± 0.03
<i>p</i> -OMe	p-Cl	$11.0(\pm 0.2)$	7.96 (±0.07)	1.38 ± 0.03
<i>p</i> -OMe	p-NO ₂	88.3 (±0.9)	46.5 (±0.6)	1.90 ± 0.03
p-Cl	<i>p</i> -Me	0.481 (±0.004)	0.333 (±0.003)	1.44 ± 0.02
p-Cl	Ĥ	1.15 (±0.02)	0.650 (±0.001)	1.77 ± 0.04
p-Cl	p-Cl	2.76 (±0.05)	$1.50(\pm 0.02)$	1.84 ± 0.04
p-Cl	p-NO ₂	20.0 (±0.3)	10.6 (±0.2)	1.87 ± 0.04

^{*a*} Concentrations of NS and BA are the same as in Tables 1 and 2. ^{*b*} Standard deviations.

Table 5 Activation parameters^{*a*} for the reactions of β -nitrostyrenes with X-benzylamines in acetonitrile at 25.0 °C^{*b*}

x	Y	Reaction path	$\Delta H^{\ddagger}/\text{kcal}$ mol ⁻¹	$-\Delta S^{\ddagger}$ / cal mol ⁻¹ K ⁻¹	$\Delta G^{\ddagger}/ ext{kcal} \ ext{mol}^{-1}$
<i>p</i> -OMe	<i>p</i> -Me	k_{2}	0.5	64	19.6
p-OMe	p-NO ₂	k_2	0.9	55	17.3
p-Cl	p-Me ²	k_2	0.5	61	18.7
p-Cl	p-NO ₂	k_2	1.0	58	18.3
<i>p</i> -OMe	<i>p</i> -Me	k_3	4.0	44	17.1
<i>p</i> -OMe	$p-NO_2$	k_3	4.6	32	14.1
p-Cl	<i>p</i> -Me	k_3	4.6	44	17.7
p-Cl	p-NO ₂	k_3	3.8	41	16.0

^{*a*} Calculated by the Eyring equation. The maximum errors calculated (by the method of K. B. Wiberg, *Physical Organic Chemistry*, Wiley, New York, 1964, p. 378) are ± 0.5 kcal mol⁻¹ and ± 2 eu for ΔH^{\ddagger} and ΔS^{\ddagger} , respectively. ^{*b*} Concentrations of NS and BA are the same as in Tables 1 and 2.

p-NO₂ set. This is quite reasonable, since for this set of substituents the extent of bond formation in the TS is the greatest with the largest magnitude of $\rho_{\rm Y}$ and $\rho_{\rm X}$ ($\beta_{\rm X}$) values (Tables 1 and 2).

Finally, the activation parameters in Table 5 support the proposed mechanism. We note that in general the ΔH^{\ddagger} values are higher but the negative ΔS^{\ddagger} values are, in general, large. This is in accord with the greater degree of bond formation (exoergic) leading to less energy being required to break the π bond (endoergic) on C=C but *more rigid* four-membered TS, I, for the k_2 path. For the k_3 path, the six-membered TS, II, has a looser (than I) structure with smaller negative ΔS^{\ddagger} .

It is well known that there is a charge imbalance in the TS for the addition reactions of amines to activated olefins such as β -nitrostyrenes,^{5a,10} eqn. (5). The TS "imbalance" was attributed to a *lag* in the charge delocalization into the NO₂ moiety *behind* C–N bond formation in the TS.^{5b,10} This sort of imbal-

Table 6 The λ_{max} (nm) ranges of extinction coefficient ($\epsilon/dm^3 mol^{-1} cm^{-1}$) and ($k_{obs}/10^{-4} s^{-1}$) and percentage completion of reactions. [NS] = 8.0 × 10⁻⁵ M and [BA] = 1.5–25 mM

Х	Y	$\lambda_{\max}/$ nm	$\varepsilon/dm^3 mol^{-1}$ cm ⁻¹	$k_{\rm obs}/10^{-4}$ s ⁻¹	Completion (%)
p-OMe	<i>p</i> -Me	324	1.60-0.20	0.406-15.5	87.5
1	Ĥ	311	1.50-0.18	0.751 - 37.1	88.0
	p-Cl	314	1.70-0.21	2.49 - 108	87.6
	p-NO ₂	307	1.90-0.23	15.5-878	88.4
<i>p</i> -Me	<i>p</i> -Me	324	1.80-0.21	0.364-13.5	88.3
1	Ĥ	311	1.55-0.19	0.579-29.4	87.7
	p-Cl	314	1.75-0.22	1.88 - 82.0	87.4
	p-NO ₂	307	1.90-0.25	14.9–637	86.8
Н	<i>p</i> -Me	324	1.42-0.17	0.224-8.93	88.0
	Ĥ	311	1.50-0.15	0.344-20.1	90.0
	p-Cl	314	1.20-0.15	1.30-56.1	87.5
	$p-NO_2$	307	1.75-0.20	9.47–385	88.6
p-Cl	<i>p</i> -Me	324	1.50-0.18	0.108-4.83	88.0
<i>r</i> -	H	311	1.75-0.22	0.180-9.78	87.4
	p-Cl	314	1.25-0.15	0.283-22.8	88.0
	p-NO ₂	307	1.65-0.20	3.02-195	87.8

ance leads to an extreme structure in which negative charge builds up on the C_{β} carbon, as in III, instead of delocalizing onto the NO₂ group, as in IV,¹⁰ in the TS. Since the negative charge transferred from the amine to the substrate is *practically* localized on C_{β} in the TS, the proton transfer to C_{β} from the amine should become viable, and our proposal of the proton transferred TS structures, I and II, is supported. The low cost of energy (ΔH^{\ddagger}) required for the π -bond cleavage in the TS may also be partly attributable to the concurrent proton transfer. In view of the results of Bernasconi *et al.*,^{5a} that there is considerable positive charge development on the amine nitrogen in the TS, the positive charge carried away by the transferring proton should be small, *i.e.*, the N····H bond stretching should be in its early stage in I and II.

In summary, the addition of benzylamines to (E)- β -nitrostyrenes in acetonitrile proceeds by two pathways, the uncatalyzed (k_2) and catalyzed (k_3) paths. Furthermore, the reaction is a one-step process, in which the proton transfer from benzylamine to the β -carbon occurs concurrently with the addition of benzylamine to the α -carbon. This assertion is supported by the observation of relatively large primary kinetic isotope effects, $k_{\rm H}/k_{\rm D} > 1.0$, for deuterated nucleophiles, XC₆H₄CH₂ND₂. The charge imbalance leading to a practically localized negative charge on C_{β} in the TS, **III**, seems to provide support for the proposed concurrent proton transfer. Bond formation in the TS is more advanced in the k_2 (larger negative $\rho_{\rm XY}$) than k_3 path, so that the k_2 path has a more rigid (more negative ΔS^{\ddagger}) four-membered structure with a greater degree of proton transfer.

Experimental

Materials

Solvent, acetonitrile (Merck GR) was used after three distil-

Table 7 The k_{obs} versus [BA] (benzylamine concentration/M) data in acetonitrile at 25.0 °C

Х	Y	[BA] M	$k_{\rm obs}\!/10^{-4}~{\rm s}^{-1}$	$k_2/10^{-2} \mathrm{M}^{-1} \mathrm{s}^{-1}$	$k_3/M^{-2} s^{-1}$	R corr. coeff.
<i>p</i> -OMe	<i>p</i> -Me	0.0015	0.406	2.55 ± 0.04	1.51 ± 0.03	0.999
		0.0030	0.975			
		0.0045	1.47			
		0.0060	1.96			
		0.0075	2.74			
		0.0100	4.03			
		0.0150	7.34			
		0.0200	11.32			
		0.0250	15.55			
p-OMe	p-Cl	0.0015	2.49	15.2 ± 0.3	11.0 ± 0.2	0.999
		0.0030	5.76			
		0.0045	9.21			
		0.0060	13.3			
		0.0075	17.3			
		0.0100	25.6			
		0.0150	47.1			
		0.0200	/4./			
		0.0250	108			
<i>p</i> -Me	p-Cl	0.0015	1.88	11.9 ± 0.4	8.30 ± 0.03	0.994
		0.0030	4.18			
		0.0045	7.17			
		0.0060	10.2			
		0.0075	14.7			
		0.0100	20.6			
		0.0150	34.8			
		0.0200	57.0			
		0.0250	82.0			
<i>p</i> -Me	$p-NO_2$	0.0015	14.9	86.2 ± 0.3	64.1 ± 0.2	0.996
		0.0030	32.7			
		0.0045	52.2			
		0.0060	74.4			
		0.0075	98.8			
		0.0100	147			
		0.0150	264			
		0.0200	420			
		0.0250	03/			

Fig. 1 The plot of $k_{obs} vs.$ concentration of benzylamine for the reaction of (E)-*p*-chloro- β -nitrostyrene in MeCN at 25.0 °C.

lations. Benzylamines (Aldrich GR) were used after recrystallization. The β -nitrostyrenes were prepared by the literature method of Worrall.¹¹ The analytical data are as follows (IR: NICOLET 5BX FTIR; NMR: JEOL 400 MHz).

(*E*)-*p*-Methyl-β-nitrostyrene. Mp 97–99 °C; λ_{max} 324 nm;

104 J. Chem. Soc., Perkin Trans. 2, 2000, 101–105

IR(KBr) ν_{max}/cm^{-1} 3100 (C–H, alkene), 1636 (C=C, alkene), 1595 (C=C, aromatic), 1431 (–CH₂ bend); ¹H NMR (400 MHz, CDCl₃) 2.41 (3H, s, –CH₃), 7.26 (2H, d, *m*-H, *J* 7.81 Hz), 7.44 (2H, d, *o*-H, *J* 8.31 Hz), 7.57 (1H, d, =CH, *J* 13.7 Hz), 7.99 (1H, d, =CH, *J* 13.7 Hz); ¹³C NMR (100.4 MHz, CDCl₃) 143.1, 139.2, 136.3, 130.2, 129.2, 127.3, 100.6, 21.7.

(*E*)-β-Nitrostyrene. Mp 58–60 °C; λ_{max} 311 nm; IR(KBr) ν_{max} /cm⁻¹ 3113 (C–H, alkene), 1629 (C=C, alkene) 1582, 1475 (C=C, aromatic), 1448 (–CH₂ bend); ¹H NMR (400 MHz, CDCl₃) 7.45 (2H, d, *m*-H, *J* 6.84 Hz), 7.55 (2H, d, *o*-H) 7.59 (1H, d, =CH, *J* 13.7 Hz), 8.01 (1H, d, =CH, *J* 13.7 Hz); ¹³C NMR (100.4 MHz, CDCl₃) 139.1, 137.1, 132.2, 130.1, 129.4, 129.2.

(*E*)-*p*-Chloro-β-nitrostyrene. Mp 102–104 °C; λ_{max} 314 nm; IR(KBr) ν_{max} /cm⁻¹ 3107 (C–H, alkene), 1636 (C=C, alkene), 1589 (C=C, aromatic), 1441 (–CH₂ bend); ¹H NMR (400 MHz, CDCl₃), 7.43 (2H, d, *m*-H, *J* 8.79 Hz), 7.49 (2H, d, *o*-H, *J* 8.79 Hz), 7.57 (1H, d, =CH, *J* 13.7 Hz), 7.97 (1H, d, =CH, *J* 13.7 Hz); ¹³C NMR (100.4 MHz, CDCl₃) 137.7, 137.4, 130.0, 129.8, 129.3, 128.5, 127.3.

(*E*)-*p*-Nitro-β-nitrostyrene. Mp 194–196 °C; λ_{max} 307 nm; IR(KBr) ν_{max} /cm⁻¹ 3101 (C–H, alkene), 1635 (C=C, alkene), 1594 (C=C, aromatic), 1431 (–CH₂ bend); ¹H NMR (400 MHz, CDCl₃) 7.64 (1H, d, =CH, *J* 13.7 Hz), 7.73 (2H, d, *m*-H, *J* 8.79 Hz), 8.04 (1H, d, CH, *J* 13.7 Hz), 8.32 (2H, d, *o*-H, *J* 8.79 Hz); ¹³C NMR (100.4 MHz, CDCl₃) 136.7, 135.0, 129.7, 128.9, 128.3.

Kinetic measurements

The reaction was followed spectrophotometrically by monitoring the decrease in the concentration of β -nitrostyrene, [NS], at λ_{max} of the substrate to over 80% completion. The reaction was studied under pseudo-first-order conditions, $[\rm NS] = 8.0 \times 10^{-5}$ M^{-1} and $[BA] = (1.5-25) \times 10^{-3} M^{-1}$ at 25.0 ± 0.1 °C. The pseudo-first-order rate constant, k_{obs} , was determined from the slope of the plot $(r > 0.993) \ln[NS]$ (2.303 log [NS]) vs. time. The uncatalyzed (k_2) and catalyzed (k_3) rate constants were determined by fitting the k_{obs} data to a parabolic curve, Fig. 1, of the k_{obs} vs. [BA] plot, eqn. (4), which corresponded to a linear plot of $k_{obs}/[BA]$ vs. [BA] with an intercept of k_2 and slope of k_3 . The two methods gave the same results within an experimental error of $\pm 3\%$. The ranges of [BA] (1.5–25 mM] and the concentration of [NB] (8.0×10^{-5} M) were fixed in all cases. The ranges of k_{obs} and extinction coefficients changes at λ_{max} are summarized in Table 6. Representative data are shown in Table 7.

Product analysis

β-Nitrostyrene (0.05 mol) and benzylamine (0.5 mol) were reacted in acetonitrile at 25.0 °C. After more than 15 half lives, solvent was removed under reduced pressure and product was separated by column chromatography (silica gel, 20% ethylacetate-n-hexane). Analytical data are as follows.

C₆H₅CH(NHCH₂C₆H₄OCH₃)CH₂NO₂. Liquid; IR(KBr) v_{max}/cm⁻¹ 2993 (C-H, CH₂), 2958 (N-H, stretch), 2946 (C-H, CH₃), 1460 (C=C, aromatic), 1448 (C-H, CH₂); ¹H NMR (400 MHz, CDCl₃) 3.82 (3H, s, OCH₃), 4.30 (1H, t, CH, J 6.90 Hz), 4.76 (2H, d, benzylamine CH₂, J 3.01 Hz), 4.78 (2H, d, benzyl CH₂, J 6.10 Hz), 6.88–7.53 (9H, m, aromatic ring); ¹³C NMR (100.4 MHz, CDCl₃) 134.0 130.7 129.4 128.9, 128.6, 128.5, 128.3, 127.2, 114.1, 113.8, 64.9, 55.2, 41.7.

Acknowledgements

The authors wish to acknowledge the financial support of the Korea Research Foundation made in the program year of 1998.

References

- 1 (a) I. Lee, Adv. Phys. Org. Chem., 1992, 27, 57; (b) I. Lee, Chem. Soc. Rev., 1995, 24, 223.
- 2 I. Lee, C. S. Shim, S. Y. Chung, H. Y. Kim and H. W. Lee, J. Chem. Soc., Perkin Trans. 2, 1988, 1919.
- 3 I. Lee, J. Phys. Org. Chem., 1992, 5, 736.
- 4 I. Lee, M. S. Choi and H. W. Lee, J. Chem. Res. (S), 1994, 92; (M), 1994, 0568.
- 5 (a) C. F. Bernasconi, R. A. Renfrow and P. R. Tia, J. Am. Chem. Soc., 1986, 108, 4541; (b) B. Varghese, S. Kothari and K. K. Banerji, J. Chem. Res. (S), 1998, 422; (M), 1998, 1853; (c) N. Jalani, S. Kothari and K. K. Baneryi, Can. J. Chem., 1996, 74, 625.
- 6 F. Ruff and I. G. Csizmadia, Organic Reactions. Equilibria, Kinetics and Mechanism, Elsevier, Amsterdam, 1994, p. 62.
- 7 C. Hansch, D. Hoekman and H. Gao, *Chem. Rev.*, 1996, **96**, 1045. 8 Estimated by $\rho_X/\rho^e = \beta_X$, ^{*la*} where ρ^e is the Hammett coefficient for dissociation of anilinium ions (p K_a) vs. σ , which is $\rho^e = 2.77$.⁹
- 9 C. D. Johnson, The Hammett Equation, Cambridge University Press, Cambridge, 1993, p. 30.
- 10 (a) C. F. Bernasconi, Acc. Chem. Res., 1987, 20, 301; (b) C. F. Bernasconi, Tetrahedron, 1989, 45, 4017.
- 11 D. E. Worrall, in Organic Synthesis, H. Gilman and A. Blatt, eds., Wiley, New York, 1941, Coll. Vol. 1, p. 413.

Paper a906639j